Application of Differential Quadrature for Modeling Solitary Wave: Numerical Solution of KDV Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...

متن کامل

Numerical Investigation of Separated Solitary Waves Solution for KDV Equation through Finite Element Technique

The Present manuscript reports the solution of well known non linear wave mechanics problem called KDV equation, here main emphasis is given on the Mathematical modeling of traveling waves and their solutions in the form of Korteweg-de Vries equation (KdV) It is a non-linear Partial Differential Equation (PDE) of third order which arises in a number of physical applications such as water waves,...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

Numerical solution of the wave equation using shearlet frames

In this paper, using shearlet frames, we present a numerical  method  for solving  the wave equation. We define a new shearlet system and by the Plancherel theorem, we calculate the shearlet coefficients.

متن کامل

Application of the block backward differential formula for numerical solution of Volterra integro-differential equations

In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Applications

سال: 2018

ISSN: 0975-8887

DOI: 10.5120/ijca2018917990